Автожир своими руками. Чертежи, краткое описание работ

На этот раз, друзья-товарищи, предлагаю переместиться в иную стихию транспортных средств – воздушную.

Несмотря на всеобъемлющий ад и погибель на земле, мы с вами не теряем надежды и мечтаем покорять небеса. А относительно недорогим средством для этого нам послужит чудо-коляска с пропеллером, имя коей - автожир .

Автожир (autogyro) - винтокрылый сверхлегкий летательный аппарат, в полёте опирающийся на несущую поверхность свободновращающегося в режиме авторотации несущего винта.

По-другому эта штука именуется как Гироплан (gyroplane), Гирокоптер (gyrocopter), и иногда Ротоплан (rotaplane).

Немного истории

Автожиры изобрёл испанский инженер Хуан де ла Сиерва в 1919 году. Он так же как и многие авиаконструкторы того времени пытался создать летающий вертолет и как это обычно бывает, создать создал, но не то, что хотел изначально. Но особо по этому факту не расстроился и в 1923 году запустил свой личный аппарат, который летал за счет эффекта авторотации. Далее запилил собственную фирму и клепал потихоньку свои гирокоптеры пока не умер. А потом был сконструирован полноценный вертолет, интерес к автожирам пропал. Хотя они все это время продолжали выпускаться, но использовались (и используются) для узких целей (метеорология, аэрофотосъемка и проч.).

Технические характеристики

Масса: от 200 до 800 кг

Скорость: до 180 км/ч

Расход топлива: ~15 л на 100 км

Дальность полета: от 300 до 800 км

Конструкция

По конструкции автожир ближе всего находится к вертолетам. По сути, он и является вертолетом, только с предельно упрощенной конструкцией.

Собственно сама конструкция включает следующие ключевые элементы: несущая конструкция - «скелет» аппарата, к которому крепится двигатель, 2 винта, сиденье пилота, приборы управления и навигации, хвостовое оперение, шасси и некоторые другие элементы.

Непосредственное управление осуществляется двумя педалями и рычагом управления.

Самым простым гирокоптерам для взлета необходим небольшой разбег в 10 - 50 метров. Это расстояние уменьшается в зависимости от увеличения силы встречного ветра и степени раскрутки несущего винта к моменту начала разбега.

Особенностью автожира является то, что он летит, пока имеется набегающий на несущий винт поток воздуха. Этот поток обеспечивается малым толкающим винтом. Именно по этому автожиру необходим хотя бы небольшой разбег.

Однако более сложные и дорогие автожиры, оснащенные механизмом изменения угла атаки лопасти, способны взлетать с места вертикально вверх (т.н. подскоком).

Изменение положения автожира в горизонтальной плоскости достигается при помощи изменения угла наклона всей плоскости несущего винта.

Автожир так же как вертолет способен зависать в воздухе.

Если у автожира отказывает двигатель, это не значит верную гибель пилота. Если двигатель выключается, ротор автожира переходит в режим авторотации, т.е. продолжает вращаться от набегающего потока воздуха, пока аппарат движется со скоростью вниз. В результате автожир медленно спускается, а не падает камнем.

Разновидности

Несмотря на простоту конструкции, гирокоптеры обладают некоторой вариативностью конструкции.

Во-первых, данные летательные аппараты могут быть оснащены как тянущим винтом, так и толкающим. Первые характерны для исторически самых первых моделей. Второй винт у них расположен спереди, как у некоторых самолетов.

Вторые – имеют винт в задней части аппарата. Автожиров с толкающим винтом – абсолютное большинство, хотя обе конструкции имеют свои преимущества.

Во-вторых, автожир хоть и очень легкое воздушное средство передвижения, но он может перемещать еще пару пассажиров. Естественно для этого должны иметься соответствующие конструктивные возможности. Встречаются автожиры с возможностью перевозки до 3-х человек, включая пилота.

В-третьих, автожир может обладать полностью закрытой кабинкой для пилота и пассажиров, частично закрытой, или может вообще не иметь кабины, которая убирается в целях грузоподъемности или же лучшего обзора.

В-четвертых, может оснащаться дополнительными ништяками, типа автомата перекоса и проч.

Боевое применение

Эффективность автожира как ударного средства конечно невысока, но побывать некоторое время на вооружении СА он успел. В частности в начале XX века, когда весь мир был охвачен вертолетной лихорадкой, военные наблюдали за развитием в этой отрасли. Когда полноценных вертолетов еще не существовало, были попытки применять гирокоптер в военных целях. Первый гирокоптер в СССР был разработан в 1929 году под названием КАСКР-1 . Затем в течении десяти последующих лет вышли еще несколько моделей автожиров, в т.ч. автожиры А-4 и А-7. Последний принимал участие в войне с финнами в качестве разведчика, ночного бомбардировщика и эвакуатора. Хоть в использовании автожира были определенные преимущества, все это время военное руководство сомневалось о его необходимости и на серийное производство А-7 так и не был поставлен. Затем в 1941-м началась война и было не до этого. После войны все силы были брошены на создание настоящего вертолета, а про автожир так и забыли.

Советский автожир А-7 был вооружен 7,62 пулеметами ПВ-1 и ДА-2. Так же была возможность крепить бомбы ФАБ-100 (4 шт.) и неуправляемые реактивные снаряды РС-82 (6 шт.)

История применение автожиров в других странах примерно такая же - аппараты использовались в начале XX века французами, англичанами, японцами, но при появлении вертолетов, практически все автожиры были списаны.

Сабж и ПА

Наверное и так понятно почему сабжем "Техники ПА" стал именно автожир. Очень простой, легкий, маневренный - его при определенной прямости рук и можно собрать в домашних условиях (видимо отсюда появились байки о зеках и вертолете из бензопилы "Дружба").

Несмотря на все его достоинства, мы получаем хорошую возможность покорять воздушное пространство в очень хреновых окружающих условиях.

Помимо банального перемещения по воздуху и перевозки мало-мальского груза, мы получаем неплохую боевую единицу, которую можно тактично использовать в разведывательных и патрульных операциях. Более того, вполне возможна установка автоматического оружия, а также использования боевых снарядов для бомбометания. Как говорится, голь на выдумки хитра, было бы желание.

Итак, подведем итоги. Преимущества сабжа я разделил на абсолютные и относительные. Относительные - сравнительно с другими летательными аппаратами, абсолютные - сравнительно с транспортными средствами вообще, в т.ч. и наземными.

Абсолютные преимущества

Простота изготовления и ремонта

Простота эксплуатации

Простота управления

Компактность

Низкий расход топлива

Относительные преимущества

Высокая маневренность

Устойчивость к сильным ветрам

Безопасность

Посадка без пробега

Низкие вибрации в полете

Недостатки

Низкая грузоподъемность

Низкая защищенность

Высокая чувствительность к обледенению

Достаточно сильный шум толкающего винта

Специфические недостатки (разгрузка ротора, кувырок, мертвая зона авторотации и др.)

ЮТруб о сабже

Долгие годы автожиры считались очень опасными летательными аппаратами. Да и сейчас 90% летающих полагают, что автожиры смертельно опасны. Самое популярное высказывание об автожирах: "Они соединяют в себе недостатки самолетов и вертолетов". Конечно же, это не так. Достоинств у автожиров достаточно.
Так откуда же мнение о колоссальной опасности автожиров?
Сделаем короткий экскурс в историю. Автожиры были изобретены в 1919 году испанцем де ла Сиервой. Сделать это, по легенде, его побудила гибель его друга в самолете. Причиной катастрофы стало сваливание (потеря скорости и потеря подъемной силы и управляемости). Именно желание сконструировать ЛА, не боящийся сваливания, и привела его к изобретению автожира. Выглядел автожир Ла Сиервы вот так:

По иронии судьбы, Ла Сиерва сам погиб при крушении самолета. Правда, пассажирского.
Следующий этап связан с Игорем Бенсеном, американским изобретателем, который в 50-е годы придумал конструкцию, легшую в основу практически всех современных автожиров. Если автожиры Сиервы были, скорее, самолетами с установленным ротором, то автожир Бенсена был абсолютно другим:

Как видим, тракторное расположение двигателя сменилось на толкающее, а конструкция радикально упростилась.
Вот это радикальное упрощение конструкции и сыграло злую роль с автожирами. Они стали активно продаваться в виде китов (наборов для самостоятельной сборки), делаться "умельцами" в гаражах, активно облетываться без какого-нибудь инструктажа. Результат понятен.
Смертность на автожирах достигла небывалых отметок (примерно в 400 раз выше, чем на самолетах - даю по английской статистике нулевых годов, в нее как раз попали ТОЛЬКО автожиры бенсеновского типа, различного рода самоделки).
При этом особенности управления и аэродинамики автожира толком изучены не были, они оставались экспериментальными аппаратами в самом худшем смысле этого слова.
В результате при их конструировании часто допускались серьезные ошибки.
Посмотрите на этот аппарат:

Вроде бы, внешне похож на современные автожиры, фотографии которых я приводил в первом посте. Вроде бы, да не похож.

Во-первых, у RAF-2000 не было горизонтального оперения. Во-вторых, линия тяги двигателя проходила значительно выше вертикального центра тяжести. Двух этих факторов хватало, чтобы сделать этот автожир "смертельной ловушкой",
Позже, во многом благодаря катастрофам RAF, люди изучили аэродинамику автожира и нашли "подводные камни" этого, казалось бы. совершенного летательного аппарата.
1. Разгрузка ротора . Автожир летает благодаря свободно вращающемуся ротору. Что произойдет, если автожир попадет в состояние временной невесомости (восходящий поток воздуха, верхняя точка "бочки", турбулентность и т.д.)? Обороты ротора упадут, вместе с ними упадет подъемная сила... Казалось бы, ничего страшного, ибо такие состояния длятся недолго - доли секунды, секунду максимум.
2. Да, ничего страшного, если бы не высокая линия тяги, которая может привести к силовому кувырку (PPO - power push-over).

Да, это опять рисовал я;)) На рисунке видно, что центр тяжести (CG) расположен значительно ниже линии тяги (thrust) и что сопротивление воздуха (drag) тоже приложено ниже линии тяги. В результате возникает, как говорят в авиации, пикирующий момент. Т.е., автожир норовит кувыркнуться вперед. В обычной ситуации ничего страшного - пилот не даст. Но в ситуации разгрузки ротора пилот уже не управляет аппаратом, и тот остается игрушкой в руках могучих сил. И кувыркается. Причем происходит это зачастую очень быстро и неожиданно. Только что летел и наслаждался видами, и вдруг БАЦ! и ты уже в неуправляемой жестяной банке с палками падаешь вниз. Без шансов восстановить управляемый полет - это тебе не самолет или дельталет.
3. Кроме того, у автожиров есть еще диковинные штуки. Это PIO (pilot induced oscillations - спровоцированная летчиком продольная раскачка ). В случае с нестабильными автожирами это очень вероятно. Дело в том, что автожир реагирует несколько замедленно. Поэтому может случиться ситуация, в которой пилот устроит этакую "раскачку" - пытаясь погасить колебания автожира, он на самом деле их усиливает. В результате колебания "вверх-вниз" нарастают, и аппарат переворачивается. Впрочем, на самолете тоже возможна PIO - простейшим примером будет известная привычка начинающих пилотов бороться с "козлом" резкими движениями ручки. В результате амплитуда "козла" только увеличивается. На нестабильных автожирах эта самая раскачка очень опасна. На стабильных лечится очень просто - нужно бросить "ручку" и расслабиться. Автожир сам вернется в спокойное состояние.

RAF-2000 был автожиром с очень высокой линией тяги (HTL, high thrust line gyro - автожир с высоким прохождением линии тяги), бенсеновские - с низкой линией тяги (LTL, low thrust line gyro - автожир с низким прохождением линии тяги). И поубивали на пару очень, очень, очень много пилотов.

4. Но даже на этих автожирах можно было бы летать, если бы не другая обнаруженная штука - оказывается, автожиры управляются совсем не как самолеты ! В комментах к прошлому посту я описывал реакцию на отказ двигателя (ручку от себя). Так вот, в нескольких статьях я прочитал о прямо противоположном!!! В автожире при отказе двигателя нужно срочно подгрузить ротор, дав ручку НА СЕБЯ и УБРАВ ГАЗ. Надо ли говорить, что чем опытнее пилот самолета, тем мощнее в его подкорке сидит рефлекс: при отказе ручку от себя и газ на максимум. В автожире, особенно нестабильном (с высокой линией тяги), такое поведение может привести к тому самому силовому кувырку.
Но это не все - у автожиров очень много разных особенностей. Все из них я не знаю, ибо сам еще не прошел курс обучения. Но многие известны - автожиры не так любят "педальки" на посадке (скольжение, с помощью которого "самолетчики" часто "травят высоту"), не переносят "бочки" и много чего еще.
Т.е., на автожире жизненно важно учиться у грамотного и опытного инструктора ! Любые попытки самостоятельно освоить автожир смертельно опасны! Что не мешает огромному количеству людей по всему миру строить и строить свои табуретки с винтом, самостоятельно их осваивать и регулярно на них биться.

5. Обманчивая простота . Ну и крайний подводный камень. Автожиры очень просто и приятно управляются. Многие совершают самостоятельные вылеты на них через 4 часа обучения (я на планере вылетел на 12-м часу, раньше 10-ти это вообще редко бывает). Посадка гораздо проще, чем на самолете, трясет несравнимо меньше - вот и теряют люди чувство опасности. Думаю, эта обманчивая простота убила не меньше народу, чем кувырки с раскачками.
У автожира есть свой "flying envelope" (летные ограничения), которые необходимо соблюдать. Ровно как и в случае с любым другим летательным аппаратом.

Игры до добра не доводят:

Ну вот и все ужасы. На каком-то этапе развития автожиров казалось, что все кончено, и автожиры так и останутся уделом энтузиастов. Но случилось совершенно обратное. Нулевые годы стали временем колоссального бума автожиростроения. Причем бума ФАБРИЧНЫХ автожиров, а не самодельных и полусамодельных китов.. Бума настолько сильного, что в 2011 году в Германии было зарегистрировано 117 автожиров и 174 ультралегких самолета/дельталета (соотношение, немыслимое еще в 90-е). Что особенно приятно, лшидеры этого рынка, возникшего лишь недавно, демонстрируют отличную статистику безопасности.
Кто эти новые герои-автожиростроители? Что они такого придумали, чтобы компенсировать, казалось бы, огромные недостатки автожиров? Об этом в следующей серии;)

АВТОЖИР , летательный аппарат тяжелее воздуха, в котором в отличие от самолета подъемная сила создается с помощью вращающегося на вертикальной оси винта-ротора. За все время полета ротор вращается свободно от встречного потока воздуха. Поступательное перемещение получается с помощью мотора с обычным для самолета пропеллером. Основные части автожира за исключением ротора, т. е. его фюзеляж, шасси, оперение и управление, мало чем отличаются от самолетных. На фиг. 1 дана схема автожира А-4, где а - мотор, б - винт, в - механический запуск ротора, г - втулка ротора, д - лопасти ротора, е - междулопастные расчалки, ж - поддерживающие расчалки, з - киль, и - руль поворота, к - руль высоты, л - стабилизатор, м - крыло с элероном, н - шасси. При косой обдувке винта окружная скорость допасти, идущей по движению, складывается со скоростью полета, а скорость лопасти, идущей против движения, равняется разности этих скоростей. Благодаря возникающей при этом разнице в подъемных силах лопастей, находящихся в различных угловых положениях, появляется поперечный момент, стремящийся опрокинуть винт. Этот момент возникает на всех винтах, имеющих жесткое крепление лопастей ко втулке (большинство геликоптерных винтов). У автожира для ликвидации этого момента лопасти ротора прикреплены ко втулке шарнирно т. о., что они могут под действием внешних сил свободно взмахивать вверх и вниз около шарнира с горизонтальной осью.

Для уничтожения напряжений в лонжероне лопасти от изгиба в плоскости вращения в крепление лопасти ко втулке введен еще шарнир с вертикальной осью, относительно которого лопасть может свободно повертываться в плоскости вращения. В каждый данный момент при полете лопасти устанавливаются по равнодействующей подъемных и центробежных сил. Шарнирное крепление лопастей исключает также возникновение на роторе жироскопических моментов. Небольшое крыло автожира берет на себя на малых скоростях 7-8%, а на больших до 30% общей подъемной силы. Основным его назначением является нести на себе элероны, с помощью которых осуществляется поперечное управление аппаратом. Новейшие автожиры, у которых в отличие от изображенного на фиг. 1 управление осуществляется не обычными для самолета органами, а наклонением в продольном и поперечном направлении оси вращения ротора (т. н. непосредственное управление), совсем не имеют крыла.

История . Автожир был изобретен испанским инженером Жуаном де-ла Сиерва в 1920 г. Основной идеей изобретателей было создать летательный аппарат, для которого не была бы страшна потеря скорости и следующий за ней штопор. Им было построено несколько неудачных аппаратов, роторы некоторых имели разное число лопастей и конструкций, пока в 1923 г. не было введено шарнирное крепление лопастей ротора ко втулке, обеспечившее успешные полеты автожира. Построив еще ряд автожиров, Сиерва в 1928 г. на автожир С-8 совершил перелет из Парижа в Лондон и круговой перелет по Англии. В конце 1928 г. компанией Сиерва был построен автожир С-19 М- II имевший приспособление для раскрутки ротора перед полетом, требовавший в предыдущих конструкциях длительной рулежки перед разбегом. Это приспособление состояло в особом устройстве бипланного хвостового оперения. При отклонении вверх руля и стабилизатора образуется коробка - «дефлектор», отражающая отбрасываемую винтом струю вверх на лопасти ротора. Следующая машина С-19 M-IV имеет уже механический запуск ротора перед взлетом от мотора, в дальнейшем целиком вытеснивший дефлекторный. К 1933 г., т. е. за 10 лет существования, было построено 130 автожиров, которые налетали около 30000 час., перевезя десятки тыс. пассажиров и покрыв более 4000000 км. В 1933 г. компанией Сиерва построен и испытан бескрылый двухместный автожир с непосредственным управлением С-30, который в 1934 году строился заводом де-Хавиланд (Англия) серийно под маркой С-30Р (фиг. 2). В Советском Союзе первый автожир был построен в 1929 г. инженерами Н. И. Камовым и Н. К. Скржинским на средства Осоавиахима. Этот аппарат с мотором «Титан» 230 л. с. совершил ряд удачных полетов, показав скорость до 110 км/ч на высоте 450 м.

После ряда теоретических и экспериментальных работ в 1931 г. ЦАГИ был построен автожир 2-ЭА, показавший данные, не уступающие заграничным: максимальная скорость 160 км/ч, минимальная - 55 км/ч, потолок 4200 м. В конце 1932 г. Отделом особых конструкций ЦАГИ был выпущен двухместный автожир А-4 с мотором М-26 300 л. с., который в 1933 г. выпускался небольшой серией (фиг. 3).

В том же году был выпущен двухместный автожир А-6 с мотором 100 л. с., имеющий свободнонесущий З-лопастный ротор. Автожир А-6 очень портативен, крылья его и ротор легко складываются (фиг. 4).

Этот автожир, как и А-4, снабжен механическим запуском и тормозом ротора. В 1933 г. выпущены автожиры А-7 с мотором 100 л. с. и А-8 - экспериментальный аппарат с мотором 100 л. с., имеющий кроме обычных органов управления еще и управление с помощью наклона головки ротора. Ниже мы приводим конструктивные данные наиболее характерных автожиров (см. таблицу).

Конструкция автожира . На фиг. 5, А, Б, В даны основные детали автожира С-30; на фиг. 5, А дан вид автожира, где а - вал запуска, б - бензиновый бак, в - муфта и редуктор, г - дроссель, д - совместное выключение запуска и тормозного колеса, е - замок ручки управления, ж и з - регулировка поперечного и продольного управлений, и - колесный тормоз, включение и тормоз ротора, к - регулировка угла заклинения; на фиг. 5, Б изображена управляемая втулка, где а и б - вертикальный и горизонтальный шарниры лопасти, в - ручка управления, г и д - пружины продольной и поперечной регулировки, е - зубчатое колесо, ж - управление тормозом, з - поперечный шарнир, и - втулка механического запуска, к - валик механического запуска, л - фрикционный демпфер; на фиг. 5, В показаны: муфта включения а, редуктор б, включающий валик в, пружина включения г и рычаг включения д.

Лопасти ротора (фиг. 5, А) имеют обычно трубчатый лонжерон из хромомолибденовой закаленной стали с надетыми на него деревянными или металлическими нервюрами. Передняя кромка обшита фанерой или дюралем, задняя образуется металлическим стрингером. Сверху лопасти обшиваются полотном и лакируются. В Англии делаются также лопасти сплошные из легкого дерева «бальза», причем лонжероны остаются в виде трубы. Лопасти расчаленного ротора (фиг. 1) поддерживаются при стоянке на земле с помощью тросов, крепящихся к пилону, установленному на втулке, имея при этом угол свеса вниз 5-7°. Между собой они связаны «межлопастными тросами», включающими в себя резиновые амортизаторы и прикрепленными к лопастям с помощью фрикционных демпферов.

Межлопастные тросы имеют назначение обеспечить равномерную раздачу крутящего момента на все лопасти при механическом запуске и других неустановившихся режимах работы. В отличие от расчаленного ротора свободнонесущий ротор (фиг. 5) [напр. А-6 (фиг. 4), С-30Р (фиг. 2)] не имеет поддерживающих тросов, которые заменены ограничителем у корня лопасти, а также межлопастных тросов, замененных фрикционными л или иными демпферами у вертикального шарнира а , ограничивающими и смягчающими движения лопастей в плоскости вращения (фиг. 5, Б). Надлежащая работа этих демпферов, а также положение вертикального шарнира относительно оси вращения играют очень большую роль в обеспечении плавной работы ротора. Благодаря шарнирному креплению основной действующей на лопасть силой является центробежная сила (примерно в 10 раз превышающая подъемную силу лопасти), которая и является расчетной для нервюр и стрингеров. Расчетным для лонжеронов лопасти является случай изгиба при падении и ударе об ограничитель после случайного поддува ветром на земле и случай кручения от инерционных сил в полете. Недостаточная жесткость лопасти на кручение кроме нежелательного увеличения угла закручивания вызывает вибрации и биение ротора в полете. Для обеспечения плавной работы ротора необходимо соблюдение полного подобия в расположении массы не только вдоль, но и поперек лопастей. Втулка ротора, вращающаяся на прикрепленной к кабану оси, имеет уши с шариковыми или обычными подшипниками , куда вставляются пальцы горизонтальных шарниров наконечников лопастей. Втулка имеет обычно два радиальных и один опорный подшипник, несущие на себе всю нагрузку. Материал втулки - высококачественная сталь. На фиг. 6 изображена втулка советского автожира А-7, а на фиг. 5, Б - управляемая втулка автожира С-30Р.

Последняя имеет 2 взаимно перпендикулярных шарнира а и б, относительно которых она может поворачиваться. Положение втулки при нейтральном положении ручки управления в регулируется специальными пружинами г и д , которые также облегчают и упрощают управление аппаратом. Схема управления показана на фиг. 7.

Шасси имеют широкую колею для придания аппарату большей устойчивости против поддува боковым ветром при посадке. Применяются масляная амортизация с большим ходом (120-150 мм) и баллонные колеса. Угол выноса шасси, особенно у автожиров с непосредственным управлением, очень велик (до 30°). Посадочный угол желателен не меньше 13°. Костыль, воспринимающий при крутой посадке большие нагрузки, выполняется обычно в виде колеса на стойке с масляной амортизацией. Для улучшения маневренности на земле, что важно в условиях неподготовленных посадочных площадок, он делается управляемым.

Оперение . Благодаря наличию ротора вертикальное оперение автожира имеет малую высоту, а вместе с тем и небольшую эффективность в смысле устойчивости пути. Этот вопрос решается часто постановкой маленьких боковых килей на стабилизатор или же установкой бипланного вертикального оперения. Горизонтальное оперение автожира отличается от самолетного лишь процентным соотношением между рулями и общей площадью оперения. Для автожира этот процент доходит до 55. У бескрылого автожира общая площадь горизонтального оперения несколько больше для создания достаточной поперечной статической устойчивости.

Крыло . Площадь его подбирается из условий постоянства оборотов ротора в полете и не должна превосходить 0,8 от действительной площади лопастей. В целях обеспечения надлежащей продольной устойчивости автожира крыло должно иметь центровку в пределах 25-85% средней аэродинамической хорды. Отгибы на концах крыльев (фиг. 1), служившие для увеличения поперечной статической устойчивости и противодействия боковому скольжению, на последних автожирах устранены, причем их действие компенсировано увеличением поперечного V крыльев до 8-10°. Стреловидность крыла назад в плане, выгодная конструктивно, м. б. полезна из соображений продольной и поперечной устойчивости. Все остальные агрегаты автожира (фюзеляж, винтомоторная группа) ничем существенно не отличаются от таковых у самолета.

Аэродинамика . На всех режимах полета обороты ротора остаются почти постоянными (для обычных конструкций 150- 160 об/мин.). Благодаря вращению ротора даже при больших углах атаки его, измеряемых между потоком и плоскостью, перпендикулярной к оси вращения, сечения лопастей работают на малых углах атаки. Отношение поступательной скорости к окружной скорости конца лопасти λ меняется от 0 при вертикальном спуске до значения 0,5-0,7 при максимальных скоростях. Так. обр. даже при максимальной скорости полета внешняя половина лопасти, движущейся назад, находится в условиях нормального обтекания. Устанавливаясь в каждый данный момент по равнодействующей всех сил, лопасти совершают маховое движение относительно оси горизонтального шарнира. Описываемый лопастями конус, так называемый «тюльпан», симметричен лишь при вертикальном спуске. При поступательном движении автожира несимметрия скоростей в плоскости вращения (у лопасти, которая идет по движению аппарата, относительная скорость больше, чем у идущей против движения) вызывает несимметрию сил. Ось конуса наклоняется назад и в сторону. Т. о. полная аэродинамическая реакция ротора имеет 3 компонента: тягу, направленную по оси вращения, продольную силу, перпендикулярную к ней и лежащую в направлении движения, и боковую силу, направленную в сторону лопасти, идущей вперед. Для компенсации этой последней в конструкциях автожиров ось ротора наклоняется несколько в противоположную сторону (на 1-2,5°). Для выявления причины авторотации ротора рассмотрим силы, действующие на элемент лопасти (фиг. 8) при вертикальном спуске автожира.

Истинная скорость, подходящая к элементу под углом атаки α, является равнодействующей окружной скорости и скорости протекания воздуха сквозь диск ротора. Полная аэродинамическая реакция R, как известно, будет отклонена назад от перпендикуляра к истинной скорости на угол γ = агс tg (Q/P) т. е. на угол обратного качества профиля. Как видим из фиг. 8, сила R при проектировании на ось вращения дает силу Р 1 - элементарную тягу, а в плоскости вращения - силу L, которая вызывает вращение лопасти носком вперед. Установившееся вращение имеется тогда, когда сила R направлена по оси вращения. Однако при установившейся авторотации ротора, это положение имеется только в одном сечении лопасти, находящемся примерно на 2R/3. На сечениях внутренней части лопасти равнодействующая наклонена вперед и создает крутящий момент, который поглощается внешней частью лопасти, где равнодействующая отклонена назад. Если находящийся в состоянии установившейся авторотации элемент притормозить, то благодаря уменьшению окружной скорости угол атаки возрастает, равнодействующая наклонится вперед, и возникает компонент, восстанавливающий вращение. Точно так же при ускорении вращения возникает затормаживающая сила, восстанавливающая состояние установившейся авторотации. Угол установки лопасти определяет собой угол атаки данного профиля для условий установившейся авторотации. Авторотация возможна лишь при узком диапазоне положительных углов установки лопасти, верхнее теоретическое значение которого для профиля Геттинген 429 Ɵ = 7°. На фиг. 9 изображена аэродинамическая характеристика ротора; для сравнения нанесена характеристика крыла.

Все коэффициенты для ротора отнесены не к действительной площади лопастей, а к площади ометаемого ими диска. Между тем мы видим, что максимальное значение коэффициента подъемной силы С у ротора близко к таковому для крыла. Если же С у отнесем к действительной площади лопастей, то его максимальное значение будет в 8-10 раз больше, чем таковое у крыла. Ротор не имеет режима срыва, наступающего у крыла при углах атаки 15-17° и обусловливающего штопор. Коэффициент суммарной силы ротора с увеличением угла атаки постоянно возрастает. Переходя на большие углы атаки (20-30°), автожир спокойно переходит в крутое снижение с малой скоростью.

Максимальное качество ротора около 8-10 (в зависимости от угла установки и коэффициента заполнения k, т. е. отношения действительной площади лопастей к ометаемой площади), причем качество прямо пропорционально первому и обратно пропорционально второму. Максимальное качество приходится на малые углы атаки, а, следовательно, и на малые значения С у, т. е. на условия максимальной скорости (фиг. 10).

При размахе крыла, равном диаметру ротора, мощности, затрачиваемые на преодоление индуктивного сопротивления того и другого, а также на вредное сопротивление автожира и самолета, могут считаться равными. Мощность же, затрачиваемая на преодоление профильного сопротивления крыла, как известно, пропорциональна кубу скорости (N p = C p ϱSV 3), а на преодоление профильного сопротивления ротора благодаря почти полному постоянству числа его оборотов на всех скоростях - только первой степени скорости. Т. о. надо полагать, что при небольшой нагрузке на лошадиную силу мотора, т. е. при скоростном аппарате, автожир при равном весе и мощности мотора будет иметь большую максимальную скорость, чем самолет. Это положение иллюстрируют приведенные на фиг. 11. кривые Пэно автожира и самолета.

Летные характеристики автожира вытекают из его аэродинамических характеристик: высокий коэффициент подъемной силы делает возможным горизонтальный полет с очень малыми скоростями порядка 30-40 км/ч., в то же время автожир при небольшой нагрузке на 1 л. с. не уступает самолету в максимальной скорости. Диапазон скоростей автожира достигает значений 5-6 вместо 2,5-3 для самолета. Возможна очень крутая траектория снижения вплоть до вертикального спуска, скорость которого, замеренная в летных испытаниях, составляет 10 м/сек. Кроме того, автожир имеет возможность планировать полого, по самолетному. При соответствующей раскрутке ротора перед стартом автожир имеет очень короткий разбег (порядка 25-40 м и меньше), разбег автожира С-30 с непосредственным управлением равен 11 м. Это условие вместе с возможностью посадки без пробега чрезвычайно сокращает размеры потребного аэродрома, позволяя автожиру работать в условиях неподготовленных посадочных площадок. Так как качество ротора ниже качества крыла, автожир обладает худшей (примерно на 15%) скороподъемностью и более низким потолком, чем самолет. Однако в угле взлета он не уступает, а иногда и превосходит самолет, т. к. у автожира скорость по траектории значительно меньше. Безопасность автожира характеризуется гл. обр. невозможностью штопора, отсутствием явления потери скорости, нулевой посадочной скоростью. В неспокойном воздухе он более устойчив, чем самолет, благодаря инерции вращающихся лопастей. Управление автожиром проще управления самолета; это качество особенно ярко проявляется у бескрылого автожира с непосредственным управлением. Хорошая маневренность автожира определяется гл. образом широким диапазоном скоростей, более плавной передачей перегрузки на корпус и малым моментом инерции аппарата относительно вертикальной оси. Необходимо отметить, что все специфические характеристики автожира нашли свое наиболее яркое выражение в автожире с непосредственным управлением. Этот последний имеет: более короткий разбег за счет увеличения угла атаки ротора при подрыве; большую безопасность от опрокидывания боковым ветром при посадке благодаря возможности быстро погасить подъемную силу ротора, соответственно наклонив его; полную управляемость на малых скоростях, где обычное самолетное управление мало эффективно; возможность чисто вертикального спуска, доступного обычному автожиру далеко не при всякой центровке, и целый ряд других преимуществ. Именно этому типу автожиров принадлежит будущее.

Применение . Не конкурируя с самолетом во всех областях применения, автожир найдет себе целый ряд новых областей, недоступных обыкновенному самолету. Широкий диапазон скоростей и исключительные взлетно-посадочные качества позволяют автожирам хорошо работать в условиях сильно пересеченной местности. Возможность посадки на пахоту, взлета с небольшой лужайки, простота в управлении сделают его ценным аппаратом для исполкомовской авиации. Для аэрофотосъемки автожир открывает новые перспективы благодаря возможности полета на малых скоростях. Он м. б. также с успехом использован для аэросева и борьбы с вредителями сельского хозяйства. В США автожиры используются для борьбы с лесными пожарами, для туризма и для несения полицейской службы. Военное применение автожиров также имеет весьма широкие перспективы: замена автожирами змейковых аэростатов для наблюдения и корректировки стрельбы, для целей сопровождения самолетов и ближней разведки, для сопровождения военных судов и борьбы с подводными лодками. Помимо этого, имеется вероятная возможность применения автожира как скоростной и маневренной машины в роли истребителя.

Большинство из людей, не имеющих прямого отношения к авиации, увидев это летательный аппарат в полете или стоящим на земле, скорее всего подумают: «Какой забавный маленький вертолетик! » — и сразу совершат ошибку. Внешним сходством, по сути, все и заканчивается. Дело в том, что для полета автожира и вертолета используются совершенно различные принципы.

Почему автожир летает

У вертолета подъемная и движущая сила создаются вращением несущего винта (одного или нескольких), постоянный привод на который передается от двигателя через сложную систему трансмиссии. Автомат перекоса изменяет плоскость вращающегося винта в нужном направлении, обеспечивая поступательное движение и маневрирование, регулируя скорость.

Рассказ о другом виде летательного аппарата сверхлегкой авиации — , читайте так же на нашем сайте.

Рассказ о мотопараплане и аэрошюте находится . Узнайте какие бывают аппараты с мягким крылом и тягой на двигателе.

Конструкция и принцип действия автожира совершенно иной, и, наверное, более схож даже с самолетом (планером, мотодельтапланом).

Подъемная сила обеспечивается встречным потоком воздуха, а вот в роли крыла выступает свободно вращающийся винт (его принято называть ротором). Поступательное движение обеспечивается тянущим или толкающим усилием маршевого двигателя, расположенного, соответственно, впереди или сзади летательного аппарата. А что же придает вращение ротору – всего лишь встречный воздушный поток. Это явление называется авторотацией .

Вне всякого сомнения, принцип был подсказан самой природой. Можно обратить внимание на семена некоторых деревьев (клена, липы), которые снабжены своеобразным пропеллером. Созрев, высохнув и отделившись от ветки, они не падают вертикального вниз. Сопротивление воздуха раскручивает их «роторы», и семена могут достаточно длительное время планировать , улетая от родного дерева на очень значительные расстояния. Сила тяжести, конечно, берет свое, и приземление их неминуемо. Но в том то и состоит задача человеческого гения, чтобы найти средства управлять подобным полетом.

У автожира отбор мощности от двигателя на ротор производится только в самой начальной фазе полета, для придания ему необходимой для взлета частоты вращения. Далее – короткий разбег, подъем – и все, вступает в силу закон авторотации – ротор вращается совершенно самостоятельно, вплоть до полной посадки аппарата. Расположенный под определенным углом атаки, он и создает необходимую для полета подъемную силу.

История летательного аппарата

Первым, кто всерьез занялся исследованиями и практическим применением принципа авторотации, был испанский инженер-конструктор Хуан де ла Сиерва . Начавшему заниматься самолетостроением на самой заре авиации, ему пришлось пережить катастрофу своего детища – трёхмоторного биплана, и он полностью переключился на совершенно не исследованный раздел воздухоплавания.

Им же был, после длительных испытаний в аэродинамической трубе, сформулирован и теоретически обоснован принцип авторотации. К 1919 году первая модель была разработана в чертежах, а в 1923 году автожир С-4 впервые поднялся в воздух . По конструкции это был обычный самолетный корпус, вместо крыльев оснащенный ротором. После ряда доработок был даже налажен небольшой серийный выпуск подобных аппаратов во Франции, Англии, США.

Практически параллельным курсом шли и советские авиаконструкторы. В специально созданном отделе особых конструкций (ООК) ЦАГИ велась разработка собственных автожиров. В итоге первый советский аппарат КАСКР-1 поднялся в воздух в 1929 году .

Разработан он был группой молодых инженеров, в состав которой входил Николай Ильич Камов , позже – выдающийся авиаконструктор вертолетов серии «Ка». Примечательно, что Камов, как правило, всегда принимал участие и в летных испытаниях своего детища.

КАСКР-2 был уже более доведенной и надежной машиной, что было продемонстрировано представительной правительственной комиссии на Ходынском аэродроме в мае 1931 года .

Дальнейшие изыскания и конструкторские доработки привели к созданию серийной модели, которая получила название Р-7 . Этот аппарат был создан по схеме крылатого автожира, что позволяло значительно снизить нагрузку на ротор, повысить скоростные качества.

Н.И. Камов не только разрабатывал и совершенствовал свой аппарат, но и постоянно искал ему практическое применение. Уже в те годы с автожиров Р-7 проводилось опыление сельскохозяйственных угодий .

Во время спасательной операции по снятию с льдины первой полярной экспедиции Папанина в 1938 году, на ледоколе «Ермак» стоял готовый к взлету Р-7. Хотя помощь подобной палубной авиации тогда не понадобилась, сам факт говорит о высокой надежности машины.

К сожалению, Вторая Мировая война прервала многие конструкторские начинания в этой области. Последовавшее позднее повальное увлечение вертолетной техникой отодвинуло автожиры на задний план.

Автожир воюет

Понятно, что в первой половине прошлого века, в это чрезвычайно милитаризованный период, любые новые разработки рассматривались в плоскости применения их для военных нужд. Не избежал этой участи и автожир.

Первой боевой винтокрылой машиной стал тот же Р-7 . Учитывая его способность поднимать в воздух полезную нагрузку в 750 кг, на него ставили 3 пулемета, фотоаппаратуру, средства связи и даже небольшой бомбовый комплект.

Боевая эскадрилья автожиров А-7-ЗА в составе 5 единиц принимала участие в боях на Ельнинском выступе . К сожалению, полное на тот момент господство противника в небе не дало возможности использовать эти тихоходные аппараты для настоящего ведения разведки днем – они использовались только в ночное время, в основном – для разбрасывания агитационных материалов над вражескими позициями. Знаменателен тот факт, что инженером эскадрильи был никто иной, как М.Л. Миль , будущий конструктор вертолетов серии «Ми» .

Использовали автожиры и наши противники. Специально для нужд подводного флота Германии был разработан безмоторный аппарат «Фокке-Ахгелис» ФА-330 , по сути – автожир-змей. Собирался он за считанные минуты, затем принудительно раскручивался ротор, и автожир взлетал на высоту до 220 метров, буксируемый идущей на полном ходу субмариной. Такая высота полета позволяла вести наблюдение в радиусе до 50 километров.

Смелые попытки были и у англичан. Готовясь к предстоящему вторжению в Северной Франции, они вообще планировали совместить автожир с боевым армейским джипом для десантирования с борта тяжелого бомбардировщика. Правда, даже после достаточно успешных испытаний, вопрос был снят.

Достоинства и недостатки автожира

Создателям автожира удалось решить массу вопросов безопасности и экономичности полетов, которые не удается воплотить на самолетах или вертолетах:

  • Потеря скорости, например, при выходе маршевого двигателя из строя, не приводит к сваливанию в «штопор».
  • Авторотация ротора позволяет совершить мягкую посадку даже при полной потери поступательного движения. Кстати, это свойство используется и вертолетах – там предусмотрено включение режима авторотации в аварийных ситуациях.
  • Малая длина взлетного разбега и площадки приземления.
  • Малочувствителен к термическим потокам и турбулентности.
  • Экономичен в эксплуатации, прост в постройке, производство его значительно дешевле.
  • Управление автожиром намного проще, чем у самолетов или у вертолетов.
  • Практически не боится ветра: 20 метров в секунду для него – нормальные условия.

Есть конечно, и ряд недостатков , над устранением которых постоянно работают конструкторы-энтузиасты:

  • Существует вероятность «кувырка» при посадке, особенно у моделей со слабым хвостовым оперением.
  • Не до конца исследовано явление, называющееся «мёртвая зона авторотации», приводящее к прекращению вращения ротора.
  • Недопустимы полеты на автожире в условиях возможного оледенения – это может привести к выходу ротора из режима авторотации.

В целом же, преимущества значительно перевешивают недостатки , что позволяет отнести автожир к разряду самых безопасных летательных аппаратов.

Есть ли будущее?

Поклонники этого вида мини-авиации на подобный вопрос дружно отвечают, что «эра автожиров» только начинается. Интерес к ним возродился с новой силой, и сейчас во многих странах мира выпускаются серийные модели таких летательных аппаратов.

По своей вместимости, скорости и даже расходу топлива автожир смело конкурирует с привычными легковыми автомобилями, превосходя их в своей многофункциональности и не привязанностью к дорогам.

Кроме чисто перевозочной функции, автожиры находят свое применение, выполняя задачи по патрулированию лесных массивов, морских побережий, гор, оживленных автострад, вполне могут применяться для проведения аэрофотосъёмок, видеозаписи или наблюдения.

Некоторые современные модели оснащаются механизмом «прыжкового» взлета, другие позволяют осуществить успешный взлет с места при наличии ветра более 8 км/час, что еще больше повышает функциональность автожиров.

Ведущим производителем на современном рынке таких аппаратов является немецкая компания «Autogyro» , выпускающая до 300 машин в год. Стараются не отстать и россияне – в нашей стране производят целый ряд серийных моделей: «Иркут» Иркутского авиазавода, «Твист» аэроклуба «Твистер-клуб», «Охотник» НПЦ «Аэро-Астра» и другие.

Число поклонников такого вида покорения неба постоянно растет.

Фотогалерея автожиров

Продолжая вчерашнюю тему.
Итак, как же летает автожир?

Сразу оговорюсь, что в аэродинамике - полный профан и излагаю как понимаю. Если есть знатоки - не плюйтесь желчью, а предлагайте правки.

Начнем с азов. Как вообще возникает подъемная сила у любого крыла? Практически в любом учебнике по аэродинамике для самых маленьких для пилотов вы увидите примерно такую картинку:

Обычно учат, что зона пониженного давления возникает из-за того, что частицы воздуха над крылом проходят более длинную дистанцию, чем под крылом. И по закону Бернулли возникает разрежение. Есть более продвинутая точка зрения, согласно которой все совсем не так (есть эксперименты, показывающие, что частицы воздуха над крылом и под ним на самом деле не встречаются). Но для наших целей это не важно.

Важно, что разница давлений есть и благодаря ей крыло летит.
Теперь представьте, что на картинке выше не крыло самолета, а крыло лопасть вертолета. В чем разница? Да, по сути, ни в чем. Крыло так же рассекает воздух, так же возникает подъемная сила, и летательный аппарат летит.
В зависимости от профиля, площади крыла и разных характеристик самолета, скорость при которой возникает достаточная подъемная сила, разная. Задача любого пилота - этой скорости достичь и удерживать. Ибо скорость=жизнь.
Как же нам добиться этой самой скорости? В самолетах вопрос решается просто - крыло крепят жестко к фюзеляжу, ставят двигатель с винтом и разгоняют всю конструкцию. Рано или поздно скорости хватает для взлета и мы летим.
В вертолетах вопрос решается хитрее. Двигатель разгоняет не весь вертолет, а лишь крыло. То бишь, несущий винт. И это дает огромный плюс! Ведь чем быстрее движется крыло, тем больше подъемная сила. Но разгонять весь летательный аппарат (ЛА) до больших скоростей очень трудно (нужен мощный двигатель и много топлива, а также длинная взлетно-посадочная полоса). Куда экономичней разогнать винт, а сам ЛА пусть летит на небольших скоростях. В результате получается огромный выигрыш в подъемной силе по сравнению с затратами энергии. Плюс у лопастей небольшая площадь, что создает большую нагрузку на крыло (вес аппарата, приходящийся на квадратный сантиметр лопасти). Это дает большую устойчивость к турбулентности по сравнению с самолетом. Ну и вообще - не чудо ли? Сам "самолет" летит со скоростью, скажем, 100 км/ч, а его "крыло" - со скоростью 300-500 км/ч (!!!).
Я не слишком сложно объясняю?
И вот мы подошли к автожиру. Тут человек поступил еще хитрее. Он разгоняет ТОЛЬКО сам летательный аппарат, а несущий винт (ротор) автожира разгоняется... сам! На практике при взлете ротор раскручивают специальным устройством - преротатором, но в воздухе преротатор отключается и ротор дальше крутится сам.
В детстве (моем, середина 80-х) продавались такие игрушки - к палочке был прикреплен маленький винт из фольги. Ты дуешь, винт крутится. Если фольгу скрутить в правильный профиль, то возникнет подъемная сила.
Сейчас я таких в продаже не вижу, но есть что-то подобное. Например, вот такое:


Эти маленькие "роторы" крутятся от малейшего ветерка. Кажется, ненадежно?
А теперь представьте, что будет, если эту игрушку прикрепить к автомобилю и ехать без остановки. Наши роторы ведь будут крутиться без остановки, правда? Вот примерно так крутится и ротор автожира.
А теперь самый главный ужос - А ЧТО ЕСЛИ ДВИГАТЕЛЬ ЗАГЛОХНЕТ???
Это, конечно, вещь неприятная. Но вовсе не смертельная. Самолет с остановившимся двигателем совершенно спокойно планирует, как правило, на 10 своих высот (т.е., с высоты в 1 километр пролетает 10 до посадки). У знаменитого "планера Гимли " аэродинамическое качество (так называют этот показатель) составило примерно 12. Ну, это тот самый пассажирский Боинг, у которого кончилось топливо на высоте 12 000 метров. Самолет спокойно пропланировал с остановившимися двигателями и благополучно сел. Никто даже травм серьезных не получил.

Итак, самолеты спокойно планируют. Необходимую скорость без двигателя поддерживают за счет силы тяжести, увеличивая угол атаки (опуская нос, проще говоря).
Но и вертолеты без двигателя прекрасно летают. Надо только успеть перейти в режим авторотации - перевести лопасти несущего винта в такое положение, чтобы они раскручивались потоком воздуха, идущим снизу. На авторотации вертолет совершенно спокойно и довольно мягко садится (при должном навыке летчика).
Опасность на вертолете в том, что отказ мотора произойдет на маленькой высоте и летчик не успеет перейти в режим авторотации.

С автожиром проще всего - он всегда летает на авторотации. Поэтому остановка двигателя может быть практически незаметна (сам не пробовал, конечно, но так пишут практически все). Поэтому многие пилоты автожиров и говорят, что автожир - самый безопасный аппарат. Он спокойно летает на скоростях 40-180 км./ч (самолет с аналогичным двигателем, грубо - 80-200 км/ч), не боится турбулентности, у него не бывает штопоров и сваливаний, из-за чего бьются самолеты, ему не надо срочно переходить на авторотирование при отказе двигателя, ему не нужна большая взлетно-посадочная полоса (может сесть "в точку", взлететь с 50 м.), он проще в управлении, чем самолет (и тем более, чем вертолет). Многие вылетают самостоятельно уже через 4 часа обучения (на самолете абсолютно это невероятно).
Вроде бы, идеальный аппарат. Но есть и подводные камни...
На закуску - видео посадки автожира с отказавшим двигателем.